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Abstract. On the basis of the tight-binding approximation and by including the correlation
of interdiffusion impurities at interfaces, a quantum transport theory is developed for both the
current in the plane (CIP) and the current perpendicular to the plane (CPP) of the layers in
magnetic multilayers. It is found that the CIP and CPP transport properties are quite different,
the CPP transport exhibiting self-averaging behaviour. We show that the interdiffusion-induced
correlation at interfaces can enhance the giant magnetoresistance in both the CIP and CPP
geometries.

1. Introduction

The giant magnetoresistance (GMR) in magnetic multilayers such as (Fe/Cr)nFe and
(Co/Cu)nCo has attracted much recent attention as regards the currents both in the plane of
the layers (CIP) [1, 2] and perpendicular to the plane of the layers (CPP) [3, 4]. It is widely
accepted that the GMR effect results from the different scattering rates for spin-up and spin-
down electrons. For CIP geometry, the spin-dependent conduction properties are averaged
over the lengths of the electron mean free path for spin up and spin down separately. For
CPP geometry, an additional spin-accumulation effect leads to a nonuniform electric field,
the effect of which needs to be considered.

A quasiclassical method based on the Boltzmann equation [5–7] and a quantum approach
starting from the Kubo formula [8, 9] as well as the Landauer–Büttiker formalism [10] have
been developed to address the GMR in magnetic multilayers. The relative contributions
to the scattering rate from bulk and interfacial scattering processes are considered to be
important [11]. Although there is some controversy about whether the spin-dependent
scattering is primarily interfacial or bulk scattering, it has been proposed that both the
strength and the spin dependence of the scattering at interfaces between layers are stronger
than those in the bulk of the layers, and so the scattering at the interfaces plays a crucial
role in producing the GMR effect [12]. It is not surprising that the scattering is stronger at
interfaces, as the concentration of impurities is usually higher at interfaces. In an attempt
to understand the stronger spin dependence of scattering at interfaces, Zhang and Levy [13]
pointed out recently that the scattering between randomly distributed impurities in the bulk
is phase incoherent, while that of a pair of interdiffusion impurities at the interface is phase
coherent. A single-cluster coherent potential approximation (CPA) method has been applied
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to the correlated interdiffusion impurities at interfaces [13, 14]. The physical content of the
correlation is as follows: for an interdiffusion interface composed of several monolayers
(MLs), the occupation state of a site in one of the MLs is related to that of the adjacent site
in the neighbouring ML. For instance, for an interface composed of ML1 (mainly composed
of A atoms) and ML2 (mainly composed of B atoms), in the dilute-concentration limit, if
a site in ML2 is occupied by an A atom interdiffused from ML1, then the adjacent site
in ML1 must be occupied by a B atom interdiffused from ML2. In the weak-scattering
limit, it is shown that the effect of the interdiffusion-induced correlation on the interfacial
scattering is related to the off-diagonal part of the coherent potential (self-energy) and that
the correlation enhances the spin-dependent scattering from the interfaces [14].

Since the calculation of the correlated interfacial scattering in reference [14] dealt only
with the CIP transport in a single-interface system, it is highly desirable to apply the CPA
approach to study both CIP and CPP magnetotransport in realistic magnetic multilayers and
then to examine the effect of the correlated scattering on the GMR. In this paper we will
make an effort to do this. First, we wish to derive analytical expressions for the CIP and CPP
conductivities by using the Kubo formula under the tight-binding approximation (TBA).
The interfacial scattering is determined by the self-energy, which includes off-diagonal
elements, in connection with the correlation of interdiffusion impurities at interfaces. By
applying the Green’s function approach and the Kubo formula in real space, we obtain a
microscopic quantum description of the CIP conductivityσx and CPP conductivityσz in
magnetic multilayers, with the correlation at interfaces being taken into account. It is found
that the CIP and CPP transport properties are quite different. The result forσz is close
to that obtained from an effective-relaxation-time method, indicating that there is a global
self-averaging effect in the CPP transport, while in the CIP geometry such an averaging
effect exists only in the homogeneous limit. We examine a further correlation effect on the
GMR by using the conductivity formula derived. Calculations show that the scattering from
interdiffusion impurities at interfaces enhances the magnitude of the magnetoresistance.

2. The model

Consider a magnetic multilayer structure, with a great number of well-lattice-matched
bilayers stacked along thez-axis. Each bilayer is composed of a ferromagnetic (A) film
of L0 monolayers and a nonmagnetic (B) film ofL1 monolayers. First, we consider an
ideal structure with sharp interfaces, for which there is neither interdiffusion of atoms A
and B nor geometrical roughness, as shown in figure 1(a). If reflection effects at interfaces
are neglected, the single-particle retarded Green’s function in the momentum representation
may be given by

G0,s(q, ω) = 1

ω − εsq + i/2τ0
(1)

whereεsq is the single-particle energy. Since we will focus our attention on the interface
effect on the GMR qualitatively, for simplicity, we assume that

εsq = εs0+ 2t [cos(qxa)+ cos(qya)+ cos(qza)]

in the tight-binding band of a simple cubic lattice witha the lattice constant, in whichεs0
is spin dependent [13, 14]. The small imaginary part comes from the weak bulk scattering
and τ0 is the average relaxation time, which has been assumed independent of spin and
position. With the aid of Fourier transformation, one obtains [14]

G
0,s
αβ (q‖, ω) = −igse

−iθ̃s |α−β| (2)
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Figure 1. Profiles of multilayer structures with sharp interfaces (a) and with double-monolayer
interdiffusional interfaces (b).

where

θ̃s = cos−1(cosθs + i/4tτ0) ≈ θs − iθ ′s

and

gs = 1/(2t sinθs)

with

cosθs = (ω − εs0)/2t − cos(qxa)− cos(qya) and θ ′s = 1/(4tτ0 sinθs).

Owing to the diffusional or geometrical roughness, an interface between neighbouring A
and B layers contains A and B atoms. Such an interface may include several monolayers; in
the present paper we only consider the case in which each interface contains two monolayers
[13, 14], as shown in figure 1(b). We use two integers (Kα, α′) to denote theαth monolayer,
corresponding to theα′th plane in theKαth layer, where 06 α′ 6 L0 − 1 for evenKα
and 06 α′ 6 L1 − 1 for oddKα. For convenience, both monolayers of each interface
are considered to belong to the layer on their right-hand side, i.e.,α′ = 0 and 1 for
the two monolayers of each interface. The translational invariance in thex–y plane,
which is destroyed by impurities distributed randomly at the interfaces, can be restored
by carrying out an appropriate averaging procedure, so the spin-dependent self-energy6 of
each interface is site diagonal with respect to the coordinates in thex–y plane. As a result,
the plane indices (Kα, α′) are sufficient to denote the matrix element of the self-energy. Its
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off-diagonal elements may exist due to the correlation among impurities at each interface
[14]. The self-energy can be written as

6s
αβ =


iI sα′β ′ whenKα = Kβ = 4n or 4n+ 1 andα′, β ′ = 0 or 1

iI s
′
α′β ′ whenKα = Kβ = 4n+ 2 or 4n+ 3 andα′, β ′ = 0 or 1

0 otherwise.

(3)

HereI is the imaginary part of the self-energy, which is assumed to be very small compared
with the width of the energy band. The real part of the self-energy has been neglected,
since it can be absorbed as a redefinition of the energy reference level.s = ↑ and ↓
denote the magnetization directions;s ′ = s for a ferromagnetic configuration ands ′ = −s
for an antiferromagnetic configuration.Kα = even (odd) stands for the ferromagnetic
(nonmagnetic) layers.

In the presence of impurity scattering at interfaces, the single-particle Green’s function
can be obtained from the Dyson equation

Gs
αβ = G0,s

αβ +
∑
γ,δ

G0,s
αγ 6

s
γ δG

s
δβ (4)

where, for brevity, the common argumentsq‖ = (qx, qy) andω have been omitted.
For the CIP conduction, there is no spin-accumulation effect and the electric field is

uniform everywhere; so, from the Kubo formula, the average conductivity in thex–y plane
for spin s may be written as

σ sx = lim
N→∞

1

2Na

N∑
α,β=−N

e2

4π3

∫ ′
d2q‖ v2

x

∣∣ImGs
αβ(q‖, EF )

∣∣2 = e2

4π3a

∫ ′
d2q‖ v2

xQs(q‖)

(5)

wherevx = ∂εq/∂qx is the velocity along thex-axis, 2N is the total number of monolayers
of the multilayer structure and

Qs = lim
N→∞

(1/2N)
N∑

α,β=−N

∣∣ImGs
αβ

∣∣2.
The primes on the integral signs indicate that the limit of the integration is [14]

−16 (EF − εs0)/2t − cos(qxa)− cos(qya) 6 1.

3. The method

3.1. Weak interfacial scattering

To the first-order approximation of the self-energy, equation (4) yields

Gs
αβ = G0,s

αβ +G(1),s
αβ with G(1),s

αβ =
∑
γ δ

G0,s
αγ 6

s
γ δG

0,s
δβ .

It follows from equation (3) that the summations overγ and δ can be divided into three
parts: γ, δ < α; α 6 γ, δ 6 β; andγ, δ > β (without loss of generality, we have assumed
thatα < β). In the case of weak interfacial scattering, the dominant contribution to the sum
of the terms|ImGαβ |2 is found from those terms withα 6 γ, δ 6 β, as they are proportional
to exp(−iθ̃s |β−α|), while the other terms are proportional to exp(−iθ̃s |β+α−γ − δ|). As
a result, we make the approximation of retaining only the terms withα 6 γ, δ 6 β.
Physically, such an approximation implies that, in the calculation of the transmission
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amplitude of the particles, we neglect the interfacial reflection and retain only those terms
that relate to a particle transmitting directly from siteα to siteβ. This is reasonable when
the interfacial scattering is not strong (smallI ), as has been assumed before [15]. Then,
we obtain

G
(1),s
αβ ≈ −ig2

s e−iθ̃s |β−α|
∑
i

Vi (6)

where the summation is over all interfaces between sitesα andβ, and

Vi = I i00+ I i11+ cosθs(I
i
01+ I i10)

can be regarded as an effective self-energy of theith interface.
SubstitutingGs

αβ given by equations (2) and (6) into equation (5), in the weak-bulk-
scattering limit (θ ′s � 1), we obtain [14]

Qs ≈ gsτ0(1− ηs +O(η2
s )) (7)

whereηs = −2(Vs + Vs ′)τ0/L (ηs > 0) represents the strength of the interfacial scattering
relative to that of the bulk scattering, withL = L0 + L1 being the thickness of one period
of the multilayer.

3.2. The self-averaging method

Equation (7) is only suitable for use in the case whereηs � 1. It requires that the effect
of the interfacial scattering is much smaller than that of the bulk scattering. In most
magnetic multilayers, however, the interfacial scattering may dominate over their transport
properties. To obtain a more reasonable expression, in this subsection, we apply a self-
averaging method, in which the effect of interfacial scattering is averaged and is equivalent
to an effective bulk scattering. On using an effective bulk relaxation timeτ se including the
interfacial scattering effect, equation (7) is replaced byQs = gsτ se . For smallηs , we have

τ se (V ) = τ0(1+ 2V τ0/L) (8)

whereV = Vs + Vs ′ . If we considerV to be equal toV0 plus a small incrementδV ,
andτ se (V0) as the effective bulk relaxation time of the self-energyV0, equation (8) will be
modified into

τ se (V0+ δV ) = τ se (V0)(1+ 2δV τ se (V0)/L)

whereδV � L/τ0. It then follows thatτ se satisfies the differential equation

dτ se
dV
= 2τ s2e

L
(9)

with the initial conditionτ se (0) = τ0. The solution of equation (9) is

τ se =
τ0

1+ ηs . (10)

Correspondingly, from equation (5) the conductivity is obtained as

σ sx =
e2

4π3a

∫ ′
d2q‖ v2

xgs
τ0

1+ ηs . (11)

Equation (11) is a result obtained under the self-averaging approximation, in which the
effect of interfacial scattering is included in an effective bulk scattering. This result is valid
in two cases. One is the homogeneous limit, regardless of whether the interfacial scattering
is weak or strong. Another is that in which the interfacial scattering is weak compared with
the bulk scattering, with the result thatηs is quite small.
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3.3. Relatively strong interfacial scattering

Even in the case of weak interfacial scattering, for which the strength of the interfacial
scattering is relatively strong compared with the bulk scattering (ηs > 1), the above
perturbation calculations may not be applicable. In what follows, we start directly from
the Dyson equation, expression (4), and calculate the Green’s function. Since the interfacial
scattering is assumed to be small, we can still neglect the interfacial reflection as we did
in subsection 3.1; thus the amplitude of particles passing through an interface would only
decay by a certain factor, each interface contributing a transmission factort̃ . Thus, the
Green’s function can be written as

Gs
αβ = −igse

−iθ̃s (β−α)
∏
i

t̃i (12)

where t̃i is the transmission amplitude of theith interface between siteα and β. For
α = (Ki, α′) with α′ = 0 or 1 andβ = (Ki, β ′) with β ′ > α′, substitution of

Gs
α′β ′ = t̃i,α′G0

α′β ′

into the Dyson equation yields

t̃i,α′ = 1− gs
1∑

γ,δ=0

e−iθs (α′−δ+|γ−α′|)I iγ δ̃ ti,δ (13)

wherẽti,α′ is the transmission factor of theith interface when a particle transmits from site
α′ = 0, 1 to siteβ ′. From equation (13), we have

t̃−1
i,0 = [1− gs(I i00+ e−iθs I i10)][1 − gs(I i11+ eiθs I i01)] − g2

s e2iθs (I i00+ eiθs I i10)(I
i
11+ eiθs I i01)

(14)

where the second term represents the repeated reflections between the two monolayers of
the ith interface. This term is small relative to the first term, and so can be neglected. When
a particle atα′ = 0 transfers to siteβ ′, it passes through both monolayers of the interface.
Since t̃i is the transmission factor contributed by this interface, we havet̃i = t̃i,0, and thus

t̃i
−1 ≈ [1− gs(I i00+ e−iθs I i10)][1 − gs(I i11+ eiθs I i01)]. (15)

It is easily seen from equation (15) that̃ti
−1 for a double-monolayer interface can be

regarded as a product of two terms, each corresponding to the contribution of one of the
two monolayers. Their effective self-energies are600+ e−iθs610 and611+ eiθs601.

4. CIP and CPP conductivities

Equation (15) shows that both the diagonal and off-diagonal parts of the self-energy
contribute to the interfacial scattering. From equations (5) and (12), we can find the CIP
conductivity for each spin channel. The total CIP conductivityσx =

∑
s σ

s
x is obtained as

σx = e2

4π3

∑
s

∫ ′
d2q‖ v2

x

τ0

2t sinθs

[
1− 2τ0t sinθs

L
Uss ′

]
(16)

with

Uss ′ = (1− Ts)[(1+ Ts ′e−2θ ′sL0)(1− e−2θ ′sL1)+ (1+ Tse−2θ ′sL1)(1− e−2θ ′sL0)1ss ′ ]

1− TsTs ′e−2θ ′sL
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whereTs = t̃ 2
s is the momentum- and spin-dependent interfacial transmission coefficient,

and

1ss ′ = (1+ T 2
s ′e
−2θ ′sL)/(1+ TsTs ′e−2θ ′sL).

It is interesting to notice that equation (16) has a form similar to the result obtained
from the semiclassical approach based on the Boltzmann equation [7], indicating a close
connection between the present quantum method and the semiclassical approach. The
difference between these two approaches is that in the semiclassical approach the interfacial
transmission coefficients are phenomenological parameters independent of the momentum,
while they are momentum dependent in the present work, and are determined by the self-
energy of the interfacial scattering. Also, the density of states (DOS) in the integral of
equation (16) is of tight-binding type, while the DOS is usually free-electron-like in the
semiclassical approach [7].

In the homogeneous limit, the degree of decay of a particle’s amplitude should be very
small after the particle passes through one layer; from expression (12) for the Green’s
function, it follows thatTs → 1 and θ ′sL � 1. In such a case, it is easy to verify that
equation (16) reduces to the result derived from the self-averaging method, equation (11),
as expected. On the other hand, in the opposite limit (the local limit), whereθ ′sL0� 1 and
θ ′sL1 � 1, the second term in equation (16) is very small, indicating that the interfacial
scattering has little effect on the CIP conductivity.

We next calculate the CPP conductivity. Unlike in the CIP geometry where the electric
field is uniform, for the CPP geometry, spin-accumulation effects must be taken into account,
so the actual electric field is no longer uniform. When an electric field is applied along the
z-axis, if the spin-flip process can be neglected, a general formula for the current density
with spin s at siteα is

J sα =
∫ ′

d2q‖ j sα (17)

with

j sα =
e2

4π3
v2
z

∑
β

∣∣ImGs
αβ

∣∣2Esβ (18)

wherevz = ∂εq/∂qz is the velocity along thez-direction. Due to the translational invariance
in thex–y plane and the current conservation for each spin channel, thez-direction current
densityJ sα should be independent of siteα. Such a condition can be satisfied as long asj sα
is assumed to be independent ofα.

We make the definitionBα = 1+ (T −1
i − 1)/2(1− e−2θ ′s ) whenα belongs to theith

interface andBα = 1 otherwise. MultiplyingBα by both sides of equation (18) and then
performing summations overα, we find

j s
∑
α

Bα = e2

4π3
v2
z

g2
s

1− e−2θ ′s

∑
β

Esβ (19)

where we have used the condition thatj sα = j s is independent ofα. Since the average
electric field is given by

Ē = (1/2N)
N∑

β=−N
Esβ
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then, from equations (17) and (18), the conductivityσ sz = J s/Ē is readily obtained. The
total CPP conductivity is thus

σz =
∑
s

σ sz with σ sz =
e2

4π3

∫ ′
d2q‖ v2

z

τ0

2t sinθs

1

1+ 2τ0t sinθs(T
−1
s + T −1

s ′ − 2)/L
.

(20)

Substituting T −1
s = t̃s

−2 ≈ (1 − 2gsVs) into equation (20), we find that the CPP
conductivity has a form very similar to equation (11) derived from the effective-relaxation-
time approximation, but is quite different from equation (16). Note that equation (20) is
applicable not only in the homogeneous limit, but also in more general cases, indicating that
the CPP transport has a self-averaging effect due to the spin accumulation. It follows from
equation (20) that the CPP resistance can be regarded as a network in which the resistances
of the two spin channels are in parallel; for each spin channel, the resistances of all of
the bulk layers and interfaces are in series. Unlike in the CIP case, ifT → 0, the CPP
conductivity given by equation (20) vanishes, because the electric currents along thez-axis
must propagate through all of the interfaces. Only in the homogeneous limit do the CIP
transport and CPP transport exhibit the same behaviour.

Figure 2. The conductivitiesσx and σz as functions ofη in a nonmagnetic multilayer, with
ε
↑
0 = ε↓0 = 0, L0 = L1 = 10 andτ0 = 50. The inset showsσz/σx as a function ofτ0 with a

fixed η = 1.

5. Results and discussion

We now calculate numerically the CIP and CPP conductivities in a magnetic multilayer
structure. Figure 2 showsσx andσz as functions of the interfacial scattering strength in a
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Figure 3. The CIP MR and CPP MR as functions ofτ0. The solid line and the dashed line
correspond to the completely correlated case and the uncorrelated case, respectively.

nonmagnetic multilayer structure. As the interfacial scattering is weak compared with the
bulk scattering (η � 1), the bulk scattering dominates both the CIP and CPP transport,
so σz is very close toσx . With increasing interfacial scattering,σz drops more quickly
than σx . In the large-η limit, σz tends toward zero whileσx tends toward a finite value.
For a given interfacial scattering strength (fixedη), σz andσx are close to each other for
largeτ0, as shown in the inset of figure 2. In such a homogeneous case, the CIP transport
has a self-averaging effect like the CPP transport and thus can also be described by an
effective-relaxation-time method.

For magnetic multilayers, both the CIP and CPP conductivities are expressed in terms
of the spin-dependent interfacial transmission coefficients, which are determined by the self-
energy of the interface. It has been shown [14] that the off-diagonal part of the self-energy
comes from the correlation between the impurities at the two monolayers of each interface,
and that the degree of correlation can be described by a parameterξ with 06 ξ 6 1, where
ξ = 0 and 1 correspond to the uncorrelated and completely correlated cases, respectively.
In the weak-scattering limit, the off-diagonal elementsI s01 (=I s10) and the diagonal elements
I s00 (=I s11) satisfy a simple relation [14]:

I s01

I s00

= −ξγs (21)

where

γs =
(∫ ′

cosθs d2q‖
/

sinθs

)/(∫ ′
d2q‖

/
sinθs

)
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is spin dependent due to the spin-dependent limits of the integrations. In the following, this
relation will be used in our calculation to examine the effect of correlation on the GMR.

Next let us calculate the MR, which is defined as(σF − σA)/σA, with σF and σA the
conductivities in the ferromagnetic and antiferromagnetic cases, respectively. In figure 3,
including its inset, we plot the CIP MR and CPP MR as functions of the bulk relaxation
time τ0 in two limiting cases whereξ = 0 (dashed lines) andξ = 1 (solid lines), by taking
ε
↑
0 = EF + 3t , ε↓0 = EF − 3t , L0 = 10 andL1 = 5. In the absence of correlation, the

maximum interfacial transmission coefficients (sinθs = 1) are taken to beT 0
↑ = 0.95 for

spin up andT 0
↓ = 0.8 for spin down. It is found that the MR always increases withτ0, since

the weight of spin-dependent interfacial scattering increases while that of bulk scattering
decreases with increasingτ0. On the other hand, the MR in the completely correlated case is
much greater than that in the uncorrelated case, indicating that the correlation can enhance
GMR.

Figure 4. The CIP MR and CPP MR as functions of the interfacial transmission coefficientT 0
↓

in the case of complete correlation (solid line) and no correlation (dashed line).

Figure 4, including its inset, shows the CIP MR and CPP MR as functions of the
interfacial transmission coefficientT 0

↓ in the two cases whereξ = 0 (dashed lines) and
ξ = 1 (solid lines), withτ0 = 30, and the other parameters the same as for figure 3. As
the asymmetry of the interfacial scattering decreases, the MR always decreases in both
cases. It is worth noticing that, if the scattering potential at the interfaces did not depend
on the spin (T 0

↓ = T 0
↑ ), the MR in the uncorrelated case would vanish while a nonzero MR

would still exist in the correlated case. In the latter case, the interfacial scattering is related
not only to the scattering potential, but also to the spin-dependent band structures. It is
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easily seen from equation (21) that the ratio of the off-diagonal element to the diagonal one
is related to the band structure. Thus, even if the diagonal parts of the self-energies are
assumed spin independent, the off-diagonal parts may still be spin dependent because of the
spin-dependent band structure in the magnetic multilayers, resulting in spin dependence of
the interfacial scattering and the MR.

Figure 5. The CIP MR (solid line) and CPP MR (dashed line) as functions of the correlation
parameterξ , with τ0 = 30, and the other parameters the same as for figure 3.

The correlation parameterξ was calculated in reference [14] by using a simple diffusion
model. It was found thatξ increases with decreasing concentration of impurities at
interfaces, and reaches its maximum (ξ = 1) in the dilute limit. In figure 5, we plot
the CIP MR (solid line) and CPP MR (dashed line) against the correlation parameterξ .
We see that asξ increases, the magnitude of the MR increases. In magnetic multilayers,
when the interfacial roughness increases, the interfacial scattering strength increases and the
correlation decreases, the two changes having opposite effects on the MR. As a result, the
GMR is expected to be maximized at a particular interfacial roughness.

In summary, by including the interdiffusion-induced correlation of impurities at
interfaces, we have developed a microscopic quantum description of the CIP and CPP
conductivities in a magnetic multilayer under the tight-binding band approximation.
Analytical formulae forσx and σz are obtained. It is found that there are global self-
averaging effects for the CPP transport, while such effects exist only in the homogeneous
limit in the CIP geometry. We have examined the correlation effect and found that it can
enhance the value of the magnetoresistance. We conclude that the correlation at interfaces
plays an important role in the GMR.
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